Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.204
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8009): 826-834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538787

RESUMEN

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Asunto(s)
Tronco Encefálico , Células Ependimogliales , Conducta Alimentaria , Calor , Hipotálamo , Vías Nerviosas , Neuronas , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Células Ependimogliales/citología , Células Ependimogliales/fisiología , Conducta Alimentaria/fisiología , Ácido Glutámico/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Sensación Térmica/fisiología , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/líquido cefalorraquídeo , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Sleep Med Rev ; 74: 101907, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422648

RESUMEN

Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.


Asunto(s)
Tronco Encefálico , Sueño REM , Humanos , Sueño REM/fisiología , Tronco Encefálico/fisiología , Hipotálamo , Neuronas GABAérgicas/fisiología , Amígdala del Cerebelo
3.
PLoS One ; 19(2): e0297826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330068

RESUMEN

Perception of sounds and speech involves structures in the auditory brainstem that rapidly process ongoing auditory stimuli. The role of these structures in speech processing can be investigated by measuring their electrical activity using scalp-mounted electrodes. However, typical analysis methods involve averaging neural responses to many short repetitive stimuli that bear little relevance to daily listening environments. Recently, subcortical responses to more ecologically relevant continuous speech were detected using linear encoding models. These methods estimate the temporal response function (TRF), which is a regression model that minimises the error between the measured neural signal and a predictor derived from the stimulus. Using predictors that model the highly non-linear peripheral auditory system may improve linear TRF estimation accuracy and peak detection. Here, we compare predictors from both simple and complex peripheral auditory models for estimating brainstem TRFs on electroencephalography (EEG) data from 24 participants listening to continuous speech. We also investigate the data length required for estimating subcortical TRFs, and find that around 12 minutes of data is sufficient for clear wave V peaks (>3 dB SNR) to be seen in nearly all participants. Interestingly, predictors derived from simple filterbank-based models of the peripheral auditory system yield TRF wave V peak SNRs that are not significantly different from those estimated using a complex model of the auditory nerve, provided that the nonlinear effects of adaptation in the auditory system are appropriately modelled. Crucially, computing predictors from these simpler models is more than 50 times faster compared to the complex model. This work paves the way for efficient modelling and detection of subcortical processing of continuous speech, which may lead to improved diagnosis metrics for hearing impairment and assistive hearing technology.


Asunto(s)
Percepción del Habla , Habla , Humanos , Percepción del Habla/fisiología , Audición/fisiología , Tronco Encefálico/fisiología , Electroencefalografía/métodos , Estimulación Acústica
4.
Trends Hear ; 27: 23312165231205719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37807857

RESUMEN

While each place on the cochlea is most sensitive to a specific frequency, it will generally respond to a sufficiently high-level stimulus over a wide range of frequencies. This spread of excitation can introduce errors in clinical threshold estimation during a diagnostic auditory brainstem response (ABR) exam. Off-frequency cochlear excitation can be mitigated through the addition of masking noise to the test stimuli, but introducing a masker increases the already long test times of the typical ABR exam. Our lab has recently developed the parallel ABR (pABR) paradigm to speed up test times by utilizing randomized stimulus timing to estimate the thresholds for multiple frequencies simultaneously. There is reason to believe parallel presentation of multiple frequencies provides masking effects and improves place specificity while decreasing test times. Here, we use two computational models of the auditory periphery to characterize the predicted effect of parallel presentation on place specificity in the auditory nerve. We additionally examine the effect of stimulus rate and level. Both models show the pABR is at least as place specific as standard methods, with an improvement in place specificity for parallel presentation (vs. serial) at high levels, especially at high stimulus rates. When simulating hearing impairment in one of the models, place specificity was also improved near threshold. Rather than a tradeoff, this improved place specificity would represent a secondary benefit to the pABR's faster test times.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Enmascaramiento Perceptual , Humanos , Umbral Auditivo/fisiología , Enmascaramiento Perceptual/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Ruido , Tronco Encefálico/fisiología , Estimulación Acústica
5.
Brain Stimul ; 16(6): 1557-1565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37827358

RESUMEN

BACKGROUND: The autonomic response to transcutaneous auricular vagus nerve stimulation (taVNS) has been linked to the engagement of brainstem circuitry modulating autonomic outflow. However, the physiological mechanisms supporting such efferent vagal responses are not well understood, particularly in humans. HYPOTHESIS: We present a paradigm for estimating directional brain-heart interactions in response to taVNS. We propose that our approach is able to identify causal links between the activity of brainstem nuclei involved in autonomic control and cardiovagal outflow. METHODS: We adopt an approach based on a recent reformulation of Granger causality that includes permutation-based, nonparametric statistics. The method is applied to ultrahigh field (7T) functional magnetic resonance imaging (fMRI) data collected on healthy subjects during taVNS. RESULTS: Our framework identified taVNS-evoked functional brainstem responses with superior sensitivity compared to prior conventional approaches, confirming causal links between taVNS stimulation and fMRI response in the nucleus tractus solitarii (NTS). Furthermore, our causal approach elucidated potential mechanisms by which information is relayed between brainstem nuclei and cardiovagal, i.e., high-frequency heart rate variability, in response to taVNS. Our findings revealed that key brainstem nuclei, known from animal models to be involved in cardiovascular control, exert a causal influence on taVNS-induced cardiovagal outflow in humans. CONCLUSION: Our causal approach allowed us to noninvasively evaluate directional interactions between fMRI BOLD signals from brainstem nuclei and cardiovagal outflow.


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Animales , Humanos , Estimulación del Nervio Vago/métodos , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Nervio Vago/fisiología , Núcleo Solitario
6.
Neurosci Biobehav Rev ; 152: 105332, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524138

RESUMEN

The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.


Asunto(s)
Traumatismos de los Nervios Periféricos , Ratones , Animales , Tálamo , Neuronas/fisiología , Tronco Encefálico/fisiología , Sinapsis/fisiología , Corteza Somatosensorial/fisiología
7.
Hear Res ; 437: 108839, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429100

RESUMEN

The binaural interaction component (BIC) of the auditory brainstem response (ABR) is the difference obtained after subtracting the sum of right and left ear ABRs from binaurally evoked ABRs. The BIC has attracted interest as a biomarker of binaural processing abilities. Best binaural processing is presumed to require spectrally-matched inputs at the two ears, but peripheral pathology and/or impacts of hearing devices can lead to mismatched inputs. Such mismatching can degrade behavioral sensitivity to interaural time difference (ITD) cues, but might be detected using the BIC. Here, we examine the effect of interaural frequency mismatch (IFM) on BIC and behavioral ITD sensitivity in audiometrically normal adult human subjects (both sexes). Binaural and monaural ABRs were recorded and BICs computed from subjects in response to narrowband tones. Left ear stimuli were fixed at 4000 Hz while right ear stimuli varied over a ∼2-octave range (re: 4000 Hz). Separately, subjects performed psychophysical lateralization tasks using the same stimuli to determine ITD discrimination thresholds jointly as a function of IFM and sound level. Results demonstrated significant effects of IFM on BIC amplitudes, with lower amplitudes in mismatched conditions than frequency-matched. Behavioral ITD discrimination thresholds were elevated at mismatched frequencies and lower sound levels, but also more sharply modulated by IFM at lower sound levels. Combinations of ITD, IFM and overall sound level that resulted in fused and lateralized percepts were bound by the empirically-measured BIC, and also by model predictions simulated using an established computational model of the brainstem circuit thought to generate the BIC.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Localización de Sonidos , Masculino , Adulto , Femenino , Humanos , Estimulación Acústica/métodos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Tronco Encefálico/fisiología , Electroencefalografía , Localización de Sonidos/fisiología
8.
Neuroscience ; 513: 96-110, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36708798

RESUMEN

The contactin-associated protein-like 2 (CNTNAP2) gene encodes for the CASPR2 protein, which plays an essential role in neurodevelopment. Mutations in CNTNAP2 are associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. Rats with a loss of function mutation in the Cntnap2 gene show increased acoustic startle response (ASR) and decreased prepulse inhibition (PPI). The neural basis of this altered auditory processing in Cntnap2 knock-out rats is currently unknown. Auditory brainstem recordings previously revealed no differences between the genotypes. The next step is to investigate brainstem structures outside of the primary auditory pathway that mediate ASR and PPI, which are the pontine reticular nucleus (PnC) and pedunculopontine tegmentum (PPTg), respectively. Multi-unit responses from the PnC and PPTg in vivo of the same rats revealed sex-specific effects of loss of CASPR2 expression on PnC activity, but no effects on PPTg activity. Female Cntnap2-/- rats showed considerably increased PnC firing rates compared with female wildtypes, whereas the difference between the genotypes was modest in male rats. In contrast, for both females and males we found meager differences between the genotypes for PPTg firing rates and inhibition of PnC firing rates, indicating that altered firing rates of these brainstem structures are not responsible for decreased PPI in Cntnap2-/- rats. We conclude that the auditory processing changes seen in Cntnap2-/- rats are associated with, but cannot be fully explained by, differences in PnC firing rates, and that a loss of function mutation in the Cntnap2 gene has differential effects depending on sex.


Asunto(s)
Trastorno del Espectro Autista , Inhibición Prepulso , Ratas , Masculino , Femenino , Animales , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Estimulación Acústica , Tronco Encefálico/fisiología , Contactinas , Inhibición Neural/fisiología
9.
Front Neural Circuits ; 16: 913480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213204

RESUMEN

Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.


Asunto(s)
Tronco Encefálico , Vestíbulo del Laberinto , Vías Aferentes , Tronco Encefálico/fisiología , Telencéfalo , Tálamo/fisiología , Vestíbulo del Laberinto/fisiología
10.
Neuroimage ; 249: 118865, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35031472

RESUMEN

Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor functions in living humans in health and disease.


Asunto(s)
Nivel de Alerta/fisiología , Tronco Encefálico/fisiología , Conectoma , Imagen por Resonancia Magnética , Actividad Motora/fisiología , Red Nerviosa/fisiología , Adulto , Tronco Encefálico/diagnóstico por imagen , Conectoma/métodos , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen
11.
Neuroimage ; 246: 118745, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808364

RESUMEN

Temporal modulations in the envelope of acoustic waveforms at rates around 4 Hz constitute a strong acoustic cue in speech and other natural sounds. It is often assumed that the ascending auditory pathway is increasingly sensitive to slow amplitude modulation (AM), but sensitivity to AM is typically considered separately for individual stages of the auditory system. Here, we used blood oxygen level dependent (BOLD) fMRI in twenty human subjects (10 male) to measure sensitivity of regional neural activity in the auditory system to 4 Hz temporal modulations. Participants were exposed to AM noise stimuli varying parametrically in modulation depth to characterize modulation-depth effects on BOLD responses. A Bayesian hierarchical modeling approach was used to model potentially nonlinear relations between AM depth and group-level BOLD responses in auditory regions of interest (ROIs). Sound stimulation activated the auditory brainstem and cortex structures in single subjects. BOLD responses to noise exposure in core and belt auditory cortices scaled positively with modulation depth. This finding was corroborated by whole-brain cluster-level inference. Sensitivity to AM depth variations was particularly pronounced in the Heschl's gyrus but also found in higher-order auditory cortical regions. None of the sound-responsive subcortical auditory structures showed a BOLD response profile that reflected the parametric variation in AM depth. The results are compatible with the notion that early auditory cortical regions play a key role in processing low-rate modulation content of sounds in the human auditory system.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Mapeo Encefálico/métodos , Tronco Encefálico/fisiología , Imagen por Resonancia Magnética/métodos , Estimulación Acústica , Adulto , Corteza Auditiva/diagnóstico por imagen , Tronco Encefálico/diagnóstico por imagen , Femenino , Humanos , Masculino , Adulto Joven
12.
Nat Commun ; 12(1): 6403, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737329

RESUMEN

The reticulotegmental nucleus (RtTg) has long been recognized as a crucial component of brainstem reticular formation (RF). However, the function of RtTg and its related circuits remain elusive. Here, we report a role of the RtTg in startle reflex, a highly conserved innate defensive behaviour. Optogenetic activation of RtTg neurons evokes robust startle responses in mice. The glutamatergic neurons in the RtTg are significantly activated during acoustic startle reflexes (ASR). Chemogenetic inhibition of the RtTg glutamatergic neurons decreases the ASR amplitudes. Viral tracing reveals an ASR neural circuit that the cochlear nucleus carrying auditory information sends direct excitatory innervations to the RtTg glutamatergic neurons, which in turn project to spinal motor neurons. Together, our findings describe a functional role of RtTg and its related neural circuit in startle reflexes, and demonstrate how the RF connects auditory system with motor functions.


Asunto(s)
Tronco Encefálico/fisiología , Reflejo de Sobresalto/fisiología , Estimulación Acústica , Animales , Vías Auditivas/fisiología , Nervio Coclear/fisiología , Ratones , Ratones Endogámicos C57BL
13.
Neuroimage ; 245: 118758, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34838949

RESUMEN

The default mode network (DMN) mediates self-awareness and introspection, core components of human consciousness. Therapies to restore consciousness in patients with severe brain injuries have historically targeted subcortical sites in the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia, with the goal of reactivating cortical DMN nodes. However, the subcortical connectivity of the DMN has not been fully mapped, and optimal subcortical targets for therapeutic neuromodulation of consciousness have not been identified. In this work, we created a comprehensive map of DMN subcortical connectivity by combining high-resolution functional and structural datasets with advanced signal processing methods. We analyzed 7 Tesla resting-state functional MRI (rs-fMRI) data from 168 healthy volunteers acquired in the Human Connectome Project. The rs-fMRI blood-oxygen-level-dependent (BOLD) data were temporally synchronized across subjects using the BrainSync algorithm. Cortical and subcortical DMN nodes were jointly analyzed and identified at the group level by applying a novel Nadam-Accelerated SCAlable and Robust (NASCAR) tensor decomposition method to the synchronized dataset. The subcortical connectivity map was then overlaid on a 7 Tesla 100 µm ex vivo MRI dataset for neuroanatomic analysis using automated segmentation of nuclei within the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia. We further compared the NASCAR subcortical connectivity map with its counterpart generated from canonical seed-based correlation analyses. The NASCAR method revealed that BOLD signal in the central lateral nucleus of the thalamus and ventral tegmental area of the midbrain is strongly correlated with that of the DMN. In an exploratory analysis, additional subcortical sites in the median and dorsal raphe, lateral hypothalamus, and caudate nuclei were correlated with the cortical DMN. We also found that the putamen and globus pallidus are negatively correlated (i.e., anti-correlated) with the DMN, providing rs-fMRI evidence for the mesocircuit hypothesis of human consciousness, whereby a striatopallidal feedback system modulates anterior forebrain function via disinhibition of the central thalamus. Seed-based analyses yielded similar subcortical DMN connectivity, but the NASCAR result showed stronger contrast and better spatial alignment with dopamine immunostaining data. The DMN subcortical connectivity map identified here advances understanding of the subcortical regions that contribute to human consciousness and can be used to inform the selection of therapeutic targets in clinical trials for patients with disorders of consciousness.


Asunto(s)
Ganglios Basales/fisiología , Mapeo Encefálico , Tronco Encefálico/fisiología , Estado de Conciencia/fisiología , Red en Modo Predeterminado/fisiología , Hipotálamo/fisiología , Mesencéfalo/fisiología , Tálamo/fisiología , Adulto , Ganglios Basales/diagnóstico por imagen , Mapeo Encefálico/métodos , Tronco Encefálico/diagnóstico por imagen , Conectoma , Red en Modo Predeterminado/diagnóstico por imagen , Imagen Eco-Planar/métodos , Humanos , Hipotálamo/diagnóstico por imagen , Mesencéfalo/diagnóstico por imagen , Tálamo/diagnóstico por imagen
14.
Sci Rep ; 11(1): 22581, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799632

RESUMEN

Optimal perception requires adaptation to sounds in the environment. Adaptation involves representing the acoustic stimulation history in neural response patterns, for example, by altering response magnitude or latency as sound-level context changes. Neurons in the auditory brainstem of rodents are sensitive to acoustic stimulation history and sound-level context (often referred to as sensitivity to stimulus statistics), but the degree to which the human brainstem exhibits such neural adaptation is unclear. In six electroencephalography experiments with over 125 participants, we demonstrate that the response latency of the human brainstem is sensitive to the history of acoustic stimulation over a few tens of milliseconds. We further show that human brainstem responses adapt to sound-level context in, at least, the last 44 ms, but that neural sensitivity to sound-level context decreases when the time window over which acoustic stimuli need to be integrated becomes wider. Our study thus provides evidence of adaptation to sound-level context in the human brainstem and of the timescale over which sound-level information affects neural responses to sound. The research delivers an important link to studies on neural adaptation in non-human animals.


Asunto(s)
Corteza Auditiva/fisiología , Tronco Encefálico/fisiología , Electroencefalografía/métodos , Neuronas/metabolismo , Estimulación Acústica , Acústica , Adolescente , Adulto , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Masculino , Modelos Neurológicos , Percepción , Sonido , Adulto Joven
15.
PLoS Biol ; 19(10): e3001439, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34669696

RESUMEN

The ability to navigate "cocktail party" situations by focusing on sounds of interest over irrelevant, background sounds is often considered in terms of cortical mechanisms. However, subcortical circuits such as the pathway underlying the medial olivocochlear (MOC) reflex modulate the activity of the inner ear itself, supporting the extraction of salient features from auditory scene prior to any cortical processing. To understand the contribution of auditory subcortical nuclei and the cochlea in complex listening tasks, we made physiological recordings along the auditory pathway while listeners engaged in detecting non(sense) words in lists of words. Both naturally spoken and intrinsically noisy, vocoded speech-filtering that mimics processing by a cochlear implant (CI)-significantly activated the MOC reflex, but this was not the case for speech in background noise, which more engaged midbrain and cortical resources. A model of the initial stages of auditory processing reproduced specific effects of each form of speech degradation, providing a rationale for goal-directed gating of the MOC reflex based on enhancing the representation of the energy envelope of the acoustic waveform. Our data reveal the coexistence of 2 strategies in the auditory system that may facilitate speech understanding in situations where the signal is either intrinsically degraded or masked by extrinsic acoustic energy. Whereas intrinsically degraded streams recruit the MOC reflex to improve representation of speech cues peripherally, extrinsically masked streams rely more on higher auditory centres to denoise signals.


Asunto(s)
Tronco Encefálico/fisiología , Reflejo/fisiología , Percepción del Habla/fisiología , Habla/fisiología , Estimulación Acústica , Adolescente , Adulto , Corteza Auditiva/fisiología , Conducta , Cóclea/fisiología , Simulación por Computador , Femenino , Humanos , Masculino , Modelos Biológicos , Neuronas/fisiología , Ruido , Análisis y Desempeño de Tareas , Adulto Joven
16.
Hum Brain Mapp ; 42(18): 5927-5942, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524716

RESUMEN

Pain perception and the ability to modulate arising pain vary tremendously between individuals. It has been shown that endurance athletes possess higher pain tolerance thresholds and a greater effect of conditioned pain modulation than nonathletes, both indicating a more efficient system of endogenous pain inhibition. The aim of the present study was to focus on the neural mechanisms of pain processing in endurance athletes that have not been investigated yet. Therefore, we analyzed the pain processing of 18 male athletes and 19 healthy male nonathletes using functional magnetic resonance imaging. We found lower pain ratings in endurance athletes compared to nonathletes to physically identical painful stimulation. Furthermore, brain activations of athletes versus nonathletes during painful heat stimulation revealed reduced activation in several brain regions that are typically activated by nociceptive stimulation. This included the thalamus, primary and secondary somatosensory cortex, insula, anterior cingulate cortex, midcingulate cortex, dorsolateral prefrontal cortex, and brain stem (BS). Functional connectivity analyses revealed stronger network during painful heat stimulation in athletes between the analyzed brain regions except for connections with the BS that showed reduced functional connectivity in athletes. Post hoc correlation analyses revealed associations of the subject's fitness level and the brain activation strengths, subject's fitness level and functional connectivity, and brain activation strengths and functional connectivity. Together, our results demonstrate for the first time that endurance athletes do not only differ in behavioral variables compared to nonathletes, but also in the neural processing of pain elicited by noxious heat.


Asunto(s)
Atletas , Tronco Encefálico/fisiología , Corteza Cerebral/fisiología , Conectoma , Percepción del Dolor/fisiología , Tálamo/fisiología , Adulto , Tronco Encefálico/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Dimensión del Dolor , Tálamo/diagnóstico por imagen , Adulto Joven
17.
Neuroimage ; 244: 118566, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509623

RESUMEN

Our increasing knowledge about gut-brain interaction is revolutionising the understanding of the links between digestion, mood, health, and even decision making in our everyday lives. In support of this interaction, the vagus nerve is a crucial pathway transmitting diverse gut-derived signals to the brain to monitor of metabolic status, digestive processes, or immune control to adapt behavioural and autonomic responses. Hence, neuromodulation methods targeting the vagus nerve are currently explored as a treatment option in a number of clinical disorders, including diabetes, chronic pain, and depression. The non-invasive variant of vagus nerve stimulation (VNS), transcutaneous auricular VNS (taVNS), has been implicated in both acute and long-lasting effects by modulating afferent vagus nerve target areas in the brain. The physiology of neither of those effects is, however, well understood, and evidence for neuronal response upon taVNS in vagal afferent projection regions in the brainstem and its downstream targets remain to be established. Therefore, to examine time-dependent effects of taVNS on brainstem neuronal responses in healthy human subjects, we applied taVNS during task-free fMRI in a single-blinded crossover design. During fMRI data acquisition, we either stimulated the left earlobe (sham), or the target zone of the auricular branch of the vagus nerve in the outer ear (cymba conchae, verum) for several minutes, both followed by a short 'stimulation OFF' period. Time-dependent effects were assessed by averaging the BOLD response for consecutive 1-minute periods in an ROI-based analysis of the brainstem. We found a significant response to acute taVNS stimulation, relative to the control condition, in downstream targets of vagal afferents, including the nucleus of the solitary tract, the substantia nigra, and the subthalamic nucleus. Most of these brainstem regions remarkably showed increased activity in response to taVNS, and these effect sustained during the post-stimulation period. These data demonstrate that taVNS activates key brainstem regions, and highlight the potential of this approach to modulate vagal afferent signalling. Furthermore, we show that carry-over effects need to be considered when interpreting fMRI data in the context of general vagal neurophysiology and its modulation by taVNS.


Asunto(s)
Tronco Encefálico/fisiología , Imagen por Resonancia Magnética/métodos , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Adaptación Fisiológica , Adulto , Afecto , Vías Aferentes/fisiología , Sistema Nervioso Autónomo/fisiología , Estudios Cruzados , Femenino , Humanos , Masculino , Sistema Nervioso Periférico/fisiología , Estimulación Eléctrica Transcutánea del Nervio
18.
J Assoc Res Otolaryngol ; 22(6): 741-753, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34415469

RESUMEN

This study aimed to validate the existence and investigate the characteristics of the transient responses from conventional auditory steady-state responses (ASSRs) using deconvolution methods capable of dealing with amplitude modulated (AM) stimulation. Conventional ASSRs to seven stimulus rates were recorded from 17 participants. A deconvolution method was selected and modified to accommodate the AM stimulation. The calculated responses were examined in terms of temporal features with respect to different combinations of stimulus rates. Stable transient responses consisting of early stage brainstem responses and middle latency responses were reconstructed consistently for all rate combinations, which indicates that the superposition hypothesis is applicable to the generation of approximately 80 Hz ASSRs evoked by AM tones (AM-ASSRs). The new transient responses are characterized by three pairs of peak-troughs named as n0p0, n1p1, and n2p2 within 40 ms. Compared with conventional ABR-MLRs, the n0p0 indicates the first neural activity where p0 might represent the main ABR components; the n1 is the counterpart of N10; the p2 is corresponding to the robust Pa at about 30 ms; the p1 and n2 are absent of real counterparts. The peak-peak amplitudes show a slight decrease with increasing stimulation rate from 75 to 95 Hz whereas the peak latencies change differently, which is consistent with the known rate-effect on AEPs. This is direct evidence for a transient response derived from AM-ASSRs for the first time. The characteristic components offer insight into the constitution of AM-ASSRs and may be promising in clinical applications and fundamental studies.


Asunto(s)
Audiometría de Respuesta Evocada/métodos , Tronco Encefálico , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos , Tronco Encefálico/fisiología , Electroencefalografía/métodos , Femenino , Humanos , Adulto Joven
19.
J Comp Neurol ; 529(16): 3633-3654, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34235739

RESUMEN

Tonotopy is a prominent feature of the vertebrate auditory system and forms the basis for sound discrimination, but the molecular mechanism that underlies its formation remains largely elusive. Ephrin/Eph signaling is known to play important roles in axon guidance during topographic mapping in other sensory systems, so we investigated its possible role in the establishment of tonotopy in the mouse cochlear nucleus. We found that ephrin-A3 molecules are differentially expressed along the tonotopic axis in the cochlear nucleus during innervation. Ephrin-A3 forward signaling is sufficient to repel auditory nerve fibers in a developmental stage-dependent manner. In mice lacking ephrin-A3, the tonotopic map is degraded and isofrequency bands of neuronal activation upon pure tone exposure become imprecise in the anteroventral cochlear nucleus. Ephrin-A3 mutant mice also exhibit a delayed second wave in auditory brainstem responses upon sound stimuli and impaired detection of sound frequency changes. Our findings establish an essential role for ephrin-A3 in forming precise tonotopy in the auditory brainstem to ensure accurate sound discrimination.


Asunto(s)
Tronco Encefálico/fisiología , Efrina-A3/genética , Efrina-A3/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Audición/fisiología , Estimulación Acústica , Animales , Audiometría de Tonos Puros , Mapeo Encefálico , Núcleo Coclear/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Discriminación de la Altura Tonal
20.
PLoS One ; 16(5): e0251287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33961673

RESUMEN

BACKGROUND: Some evidence suggests that young adults exhibit a selective laterality of auditory brainstem response (ABR) elicited with speech stimuli. Little is known about such an auditory laterality in older adults. OBJECTIVE: The aim of this study was to investigate possible asymmetric auditory brainstem processing between right and left ear presentation in older adults. METHODS: Sixty-two older adults presenting with normal hearing thresholds according to their age and who were native speakers of Quebec French participated in this study. ABR was recorded using click and a 40-ms /da/ syllable. ABR was elicited through monaural right and monaural left stimulation. Latency and amplitude for click-and speech-ABR components were compared between right and left ear presentations. In addition, for the /da/ syllable, a fast Fourier transform analysis of the sustained frequency-following response (FFR) of the vowel was performed along with stimulus-to-response and right-left ear correlation analyses. RESULTS: No significant differences between right and left ear presentation were found for amplitudes and latencies of the click-ABR components. Significantly shorter latencies for right ear presentation as compared to left ear presentation were observed for onset and offset transient components (V, A and O), sustained components (D and E), and voiced transition components (C) of the speech-ABR. In addition, the spectral amplitude of the fundamental frequency (F0) was significantly larger for the left ear presentation than the right ear presentation. CONCLUSIONS: Results of this study show that older adults with normal hearing exhibit symmetric encoding for click stimuli at the brainstem level between the right and left ear presentation. However, they present with brainstem asymmetries for the encoding of selective stimulus components of the speech-ABR between the right and left ear presentation. The right ear presentation of a /da/ syllable elicited reduced neural timing for both transient and sustained components compared to the left ear. Conversely, a stronger left ear F0 encoding was observed. These findings suggest that at a preattentive, sensory stage of auditory processing, older adults lateralize speech stimuli similarly to young adults.


Asunto(s)
Percepción Auditiva/fisiología , Tronco Encefálico/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Estimulación Acústica , Anciano , Anciano de 80 o más Años , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Percepción del Habla/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA